FAQs

Here are some of the most frequently asked questions regarding the welding of aluminum and their answers from an expert:

 

In steels a weld can be made as strong as the parent material, but this is not the case with aluminum. In almost all instances, the weld will be weaker than the parent material.

To further understand why this occurs, let's look at the two classifications of aluminum alloys: heat treatable and non-heat treatable. The latter category is hardened only by cold working which causes physical changes in the metal. The more the alloy is cold worked the stronger it gets.

But, when you weld an alloy that has been cold worked, you locally anneal the material around the weld so that it goes back to its 0 tempered (or annealed) condition and it becomes "soft". Therefore, the only time in the non-heat treatable alloys that you can make a weld as strong as the parent material is when you start with 0 tempered material.

With heat treatable aluminum alloys, the last heat treatment step heats the metal to approximately 400° F. But when welding, the material around the weld becomes much hotter than 400° F so the material tends to lose some of its mechanical properties. Therefore, if the operator doesn't perform post-weld heat treatments after welding, the area around the weld will become significantly weaker than the rest of the aluminum - by as much as 30 to 40 percent. If the operator does perform post weld heat treatments, the proprieties of a heat treatable aluminum alloy can be improved.

The following is a guide as to which series of aluminum alloys are heat treatable and which are not:

Heat treatable series: 2000, 6000, 7000.

Non-heat treatable: 1000, 3000, 4000, 5000.

 

  1. What type of shielding gas should I use for aluminum welding?

For both TIG Welding (Gas Tungsten Arc Welding or GTAW) and MIG Welding (Gas Metal Arc Welding or GMAW) use pure argon for aluminum materials up to ½" in thickness. Above ½" in thickness, operators may add anywhere between 25 to 75 percent helium to make the arc hotter and increase weld penetration. Argon is best because it provides more cleaning action for the arc than helium does and it is also less expensive than helium.

Never use any shielding gas that contains oxygen or carbon dioxide, as this will oxidize the aluminum.

 

  1. For TIG Welding, what type of electrode is best for aluminum?

For most materials, including steel, a two percent thoriated tungsten electrode is recommended, but since aluminum is welded with AC rather than DC, the electrical characteristics are different and the amount of energy put into the tungsten electrode is higher when AC welding. For these reasons, pure tungsten or zirconiated tungsten are recommended for aluminum welding.

In addition, the electrode diameter for AC welding has to be significantly larger than when using DC. It is recommended to start with an electrode that is 1/8" and adjust as needed. Zirconiated tungsten can carry more current than pure tungsten electrodes. Another helpful hint for AC welding is to use a blunt tip - the arc tends to wander around a pointed tip.

 

  1. How much preheat should I use when welding aluminum?

While a little preheat is good, too much preheat can degrade the mechanical properties of the aluminum.

As was discussed earlier, the last heat treatment for heat treatable alloys is 400° F so if the operator preheats the aluminum to 350° F and holds the temperature in that range while welding, the aluminum's mechanical properties are changed.

For the non-heat treatable alloys such as the 5000 series, if the operator holds the temperature even in the 200° F range - he or she can sensitize the material to stress corrosion cracking. In most cases, some preheat is acceptable to dry the moisture away from the piece, but preheat should be limited.

Many inexperienced aluminum welders use preheat as a crutch. Since equipment for welding aluminum needs to operate at higher capacities, many feel that preheat helps eliminate equipment limitations, but this is not the case. Aluminum has a low melting point -- 1200° F compared to 2600° F to 2700° F for steel. Because of this low melting point, many operators think they only need light duty equipment to weld the aluminum. But, the thermal conductivity of aluminum is five times that of steel, which means that the heat dissipates very quickly. Therefore, welding currents and voltages for welding aluminum are higher than they are for steel so operators actually need heavier duty equipment for aluminum.

 

  1. What is the proper stress relieving practice for aluminum welds?

When welding, the operator sets up residual stresses around the vicinity of the weld because the molten material shrinks as it solidifies. Further, when the operator takes this welded structure and begins to remove material by machining, it tends to distort and create dimensional instability. To avoid this in aluminum, operators perform stress relieving by heating the material hot enough to allow the aluminum atoms to move around.

For steel, the stress relieving temperature is approximately 1050° F to 1100° F, but for aluminum, the proper stress relieving temperature is 650° F. This means that in order for post weld stress relief on aluminum to be effective, the material will have to be heated to a temperature where mechanical properties will be lost. For this reason, post weld stress relief is not recommended for aluminum.

 

  1. How can I tell different aluminum alloys apart?

There are quite a few different aluminum alloys and for proper and safe welding, you should know what alloy your welding. If you don't, you can follow these general guidelines:

Extrusions are generally 6000 series alloys
Castings most often are a combination of aluminum/silicon cast -- some are weldable, others are not
Pieces of sheet, plate or bar are probably 5000 to 6000 series alloys

If you want to be precise, purchase an alloy tester kit that will help you determine the exact makeup of your alloy.

 

  1. How do I TIG weld two dissimilar thicknesses of aluminum?

When an operator has two dissimilar thicknesses, he or she must set the parameters so that they are high enough to TIG weld the thickest piece. When welding, favor the joint and put more of the heat on the thicker piece.

 

  1. How do I weld 7075?

Most aluminum alloys are weldable, but there are a fair number of them that are not, including 7075 aluminum. The reason 7075 is singled out in this example is that it is one of the highest strength aluminum alloys. When designers and welders look for an aluminum alloy to use, many will start by reviewing a table that lists all of the aluminum alloys and their strengths. But what those newcomers don't realize is that few of the higher strength aluminum alloys are weldable - especially those in the 7000 and 2000 series - and they should not be used.

The one exception to the rule of never using 7075 for welding is in the injection molding industry. This industry will repair dies by welding 7075 - but it should never be used for structural work.

Here are some simple guidelines to follow when choosing aluminum alloys:

 

Alloy Series Main Alloying Elements
1000 series Pure aluminum
2000 series Aluminum and copper. (High strength aluminum used in the aerospace industry )
3000 series Aluminum and manganese. (Low- to medium-strength alloys, examples of products using these alloys are beverage cans and refrigeration tubing)
4000 series Aluminum and silicon. (Most alloys in this series are either welding or brazing filler materials)
5000 series Aluminum and magnesium. (These alloys are used primarily for structural applications in sheet or plate metals - all 5000 series alloys are weldable )
6000 series Aluminum, magnesium and silicon. (These alloys are heat treatable and commonly used for extrusions, sheet and plate - all are weldable, but can be crack sensitive. Never try to weld these alloys without using filler metal)
7000 series Aluminum and zinc. (These are high strength aerospace alloys that may have other alloying elements added)

 

Lincoln suggests that if you have a need to design something of high strength aluminum, look to a 5000 series high magnesium alloy instead of a 2000 or 7000 series. The 5000 series alloys are weldable and will produce the best results.

 

Conclusion

Ateco Industry offers a full range of aluminum solutions from power sources, such as the Power Wave® 455M, that are custom designed to perform with optimal arc characteristics on aluminum, to wire feeders, such as the Cobramatic® push-pull system, for optimizing the feeding of the soft aluminum wire, to premium SuperGlaze® aluminum wire, made with consistent chemistry for consistent performance. In addition to products, Lincoln prides itself on being an aluminum welding expert and can be reached by either phone 1-888-935-3877 or e-mail to answer your questions.

 

CUSTOMER ASSISTANCE POLICY

The business of The Ateco Industry Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Ateco Industry for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Ateco Industry is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customer’s particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our products.

Ateco Industry is a responsive manufacturer, but the selection and use of specific products sold by Ateco Industry is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Ateco Industry affect the results obtained in applying these types of fabrication methods and service requirements.

 

Q?

Odio gravida atcursus neluctus a lorem. Maecenas tristiqu sters port rsen mate haslelu milsie quqn smetsre?

A.

Vestibulum ante ipsum primis in faucibus orci luctus et trices posuere cubilia Suspendisse sollicitudin velit sed leo. Ut pharetra augue nec augue. Nam elit magnandrerit sit amet tincidunt ac viverra sed nulla. Donec porta diam eu massa. Quisque diam lorem interdum vapibus ac scelerisque vitae pede. Donec eget tellus non erat lacinia fermentum. Donec in velit vel ipsum auctorulvinar. Proin ullamcorper urna et tibulum iaculis lacinia est. Proin dictum elementum velit. Fusce euismod consequat ante. Lorem ipsum dolor sit amet consectetuer adipiscing elit. Pellentese sed dolor. Aliquam congue fermentum nisl. Mauris accumsan nullael diam. Sed in lacus ut enim adipiscing aliquet.

Q?

Fusce feugiat malesuada odio. Morbi nunc odio gravida atcursus neluctus a lorem. Maecenas tristiqu?

A.

Aenean auctor wisi et urna. Aliquarat volutpat. Duis ac turpis. Integer rutrum ante eu lacusVestibulum libero nisl porta vel scelerisque eget malesuada at neque. Vivamus eget nibh. Etiamcursus leo vel metus. Nulla facilisi. Aenean nec eros.

Q?

Maecenas tristique orci ac sem. Duis ultricihre tra magnauae ab illo inventoa ster port rsen maet jhaslelu misleui portau?

A.

Nulla dui. Fusce feugiat malesuada odio. Morbi nunc odio gravida atcursus nec luctus a lorem. Maecenas tristique orci ac sem. Duis ultricies pharetra magna. Donec accumsan malesuada orci. Donec sit amet eros. Lorem ipsum dolor sit amet consectetuer adipiscing elit. Mauris fermentum dictum magna. Sed laoreet aliquam leo. Ut tellus dolor dapibus eget elementum vel cursus eleifend elit.

Q?

Duis ultricies pharetra magna. Donec accumsan malesuada orcinec sit amet eros. Lorem ipsum dolo?

A.

Donec eget tellus non erat lacinia fermentum. Donec in velit vel ipsum auctorulvinar. Proin ullamcorper urna et tibulum iaculis lacinia est. Proin dictum elementum velit. Fusce euismod consequat ante. Lorem ipsum dolor sit amet consectetuer adipiscing elit. Pellentese sed dolor. Aliquam congue fermentum nisl. Mauris accumsan nullael diam. Sed in lacus ut enim adipiscing aliquet. Donec eget tellus non erat lacinia fermentum. Donec in velit vel ipsum auctorulvinar. Proin ullamcorper urna et tibulum iaculis lacinia est.

Q?

Odio gravida atcursus neluctus a lorem. Maecenas tristiqu sters port rsen mate haslelu milsie quqn smetsre?

A.

Vestibulum ante ipsum primis in faucibus orci luctus et trices posuere cubilia Suspendisse sollicitudin velit sed leo. Ut pharetra augue nec augue. Nam elit magnandrerit sit amet tincidunt ac viverra sed nulla. Donec porta diam eu massa. Quisque diam lorem interdum vapibus ac scelerisque vitae pede. Donec eget tellus non erat lacinia fermentum. Donec in velit vel ipsum auctorulvinar. Proin ullamcorper urna et tibulum iaculis lacinia est. Proin dictum elementum velit. Fusce euismod consequat ante. Lorem ipsum dolor sit amet consectetuer adipiscing elit. Pellentese sed dolor. Aliquam congue fermentum nisl. Mauris accumsan nullael diam. Sed in lacus ut enim adipiscing aliquet.

Q?

Fusce feugiat malesuada odio. Morbi nunc odio gravida atcursus neluctus a lorem. Maecenas tristiqu?

A.

Aenean auctor wisi et urna. Aliquarat volutpat. Duis ac turpis. Integer rutrum ante eu lacusVestibulum libero nisl porta vel scelerisque eget malesuada at neque. Vivamus eget nibh. Etiamcursus leo vel metus. Nulla facilisi. Aenean nec eros.

Q?

Maecenas tristique orci ac sem. Duis ultricihre tra magnauae ab illo inventoa ster port rsen maet jhaslelu misleui portau?

A.

Nulla dui. Fusce feugiat malesuada odio. Morbi nunc odio gravida atcursus nec luctus a lorem. Maecenas tristique orci ac sem. Duis ultricies pharetra magna. Donec accumsan malesuada orci. Donec sit amet eros. Lorem ipsum dolor sit amet consectetuer adipiscing elit. Mauris fermentum dictum magna. Sed laoreet aliquam leo. Ut tellus dolor dapibus eget elementum vel cursus eleifend elit.